Dec 25,2025

Le fil en aluminium cuivré ou CCA est fondamentalement constitué d'un cœur en aluminium recouvert d'un mince revêtement de cuivre qui représente environ 10 à 15 pour cent de la section transversale totale. L'idée derrière cette combinaison est assez simple : elle cherche à tirer parti des avantages des deux mondes, à savoir un aluminium léger et abordable, combiné aux bonnes propriétés de conductivité du cuivre en surface. Mais il y a un inconvénient. Si la liaison entre ces métaux n'est pas suffisamment forte, de petits espaces peuvent se former à l'interface. Ces espaces ont tendance à s'oxyder avec le temps et peuvent augmenter la résistance électrique jusqu'à 55 % par rapport aux fils en cuivre classiques. En examinant les performances réelles, le CCA atteint généralement environ 60 à 70 % de ce qu'on appelle la norme internationale du cuivre recuit pour la conductivité, car l'aluminium ne conduit pas l'électricité aussi bien que le cuivre sur tout son volume. En raison de cette conductivité inférieure, les ingénieurs doivent utiliser des fils plus épais lorsqu'ils travaillent avec du CCA afin de supporter la même intensité de courant qu'avec du cuivre. Cette exigence annule pratiquement la plupart des avantages en poids et en coût des matériaux qui rendaient le CCA attrayant au départ.
L'augmentation de la résistance du CCA entraîne un échauffement de Joule plus important lorsqu'il transporte des charges électriques. Lorsque la température ambiante atteint environ 30 degrés Celsius, le National Electrical Code exige une réduction de la capacité de courant de ces conducteurs d'environ 15 à 20 pour cent par rapport aux câbles en cuivre similaires. Ce réglage permet d'éviter que l'isolation et les points de connexion ne surchauffent au-delà des limites sécuritaires. Pour les circuits dérivés courants, cela signifie qu'environ un quart à un tiers de la capacité de charge continue est disponible en moins pour une utilisation réelle. Si les systèmes fonctionnent régulièrement à plus de 70 % de leur puissance maximale, l'aluminium a tendance à s'assouplir par un processus appelé recuit. Ce ramollissement affecte la résistance mécanique du conducteur et peut endommager les connexions aux extrémités. Le problème s'aggrave dans les espaces restreints où la chaleur ne peut pas correctement s'évacuer. Au fil des mois et des années, la dégradation de ces matériaux crée des points chauds dangereux dans les installations, compromettant ainsi à la fois les normes de sécurité et la performance fiable des systèmes électriques.
Le câble en aluminium recouvert de cuivre (CCA) ne fonctionne tout simplement pas bien avec les systèmes actuels de Power over Ethernet (PoE), en particulier ceux conformes aux normes IEEE 802.3bt des Classes 5 et 6, capables de fournir jusqu'à 90 watts. Le problème provient de niveaux de résistance environ 55 à 60 % plus élevés que ce qui est requis. Cela entraîne de graves chutes de tension sur des longueurs de câble habituelles, rendant impossible le maintien d'une tension stable de 48 à 57 volts continu nécessaire aux appareils situés à l'autre extrémité. Ce qui suit est également très problématique : l'excès de résistance génère de la chaleur, ce qui aggrave la situation, car plus un câble est chaud, plus sa résistance augmente, créant ainsi un cycle vicieux où la température monte dangereusement. Ces problèmes contreviennent aux règles de sécurité de l'article 800 du NEC ainsi qu'aux spécifications IEEE. Les équipements peuvent cesser de fonctionner complètement, des données importantes peuvent être corrompues, ou, dans le pire des cas, les composants subir des dommages permanents s'ils ne reçoivent pas suffisamment d'alimentation.
Les câbles de plus de 50 mètres font souvent dépasser à la CCA la limite de chute de tension de 3 % imposée par le NEC pour les circuits dérivés. Cela entraîne des problèmes tels qu’un fonctionnement inefficace des équipements, des pannes précoces des appareils électroniques sensibles et divers problèmes de performance. À des intensités supérieures à 10 ampères, la CCA nécessite des réductions importantes de capacité conductrice conformément au NEC 310.15(B)(1). Pourquoi ? Parce que l'aluminium supporte la chaleur moins bien que le cuivre. Son point de fusion est d'environ 660 degrés Celsius contre 1085 degrés pour le cuivre, nettement plus élevé. Tenter de résoudre ce problème en surdimensionnant les conducteurs annule fondamentalement les économies réalisées en utilisant la CCA dès le départ. Les données du monde réel racontent aussi une autre histoire. Les installations avec de la CCA connaissent environ 40 % d'incidents liés aux contraintes thermiques en plus par rapport au câblage cuivre standard. Et lorsque ces événements se produisent dans des gaines étroites, ils créent un risque d'incendie réel que personne ne souhaite.
Lorsque le noyau en aluminium à l'intérieur des câbles CCA est exposé aux points de connexion, il commence à s'oxyder assez rapidement. Cela crée une couche d'oxyde d'aluminium ayant une forte résistance et pouvant augmenter la température locale d'environ 30 %. Ce qui suit est encore pire en termes de fiabilité. Lorsque les vis des bornes exercent une pression constante au fil du temps, l'aluminium s'écoule en effet progressivement à froid hors des zones de contact, ce qui relâche graduellement les connexions. Cela viole les exigences du code telles que NEC 110.14(A), qui précisent que les jonctions doivent être sécurisées et de faible résistance pour les installations permanentes. La chaleur générée par ce processus provoque des arcs électriques et dégrade les matériaux isolants, un phénomène fréquemment mentionné dans les investigations NFPA 921 sur les causes d'incendie. Pour les circuits transportant plus de 20 ampères, les problèmes liés aux câbles CCA apparaissent environ cinq fois plus vite par rapport au câblage cuivre standard. Et voici ce qui rend cela dangereux : ces défaillances se développent souvent silencieusement, sans signe évident lors des inspections normales, jusqu'à ce qu'un dommage sérieux survienne.
Les mécanismes clés de défaillance incluent :
Une mitigation adéquate nécessite des composés antioxydants et des bornes à couple contrôlé spécifiquement homologués pour conducteurs en aluminium—des mesures rarement appliquées en pratique avec les câbles CCA.
Le câble CCA peut être utilisé de manière responsable dans des applications à faible puissance et faible courant, où les contraintes en termes de température et de chute de tension sont minimales. Celles-ci incluent :
Le câblage en CCA ne doit pas être utilisé dans les circuits alimentant des prises, des éclairages ou toute autre charge électrique standard dans un bâtiment. Le Code national de l'électricité, notamment l'article 310, interdit son utilisation dans les circuits de 15 à 20 ampères en raison de problèmes avérés liés à une surchauffe, des fluctuations de tension et une défaillance progressive des connexions. Lorsque l'utilisation du CCA est autorisée, les ingénieurs doivent s'assurer que la chute de tension ne dépasse pas 3 % le long de la ligne. Ils doivent également garantir que toutes les connexions respectent les normes établies dans le NEC 110.14(A). Ces spécifications sont difficiles à atteindre sans équipement spécialisé et des techniques d'installation adéquates que la plupart des entrepreneurs ne maîtrisent pas.
La certification tierce est essentielle—pas facultative—pour tout conducteur CCA. Toujours vérifier la liste active selon des normes reconnues :
| Standard | Le champ d'application | Essai critique |
|---|---|---|
| UL 44 | Fil isolé en thermoset | Résistance au feu, résistance diélectrique |
| UL 83 | Fil isolé en thermoplastique | Résistance à la déformation à 121 °C |
| CSA C22.2 No. 77 | Conducteurs isolés en thermoplastique | Courbure à froid, résistance à la traction |
L'inscription dans le répertoire en ligne des certifications UL confirme une validation indépendante, contrairement aux étiquettes de fabricant non vérifiées. Le CCA non répertorié échoue sept fois plus fréquemment aux essais d'adhérence ASTM B566 que le produit certifié, augmentant directement le risque d'oxydation aux extrémités. Avant de spécifier ou d'installer, vérifiez que le numéro de certification exact correspond à une liste active et publiée.
Des conseils sur mesure, des solutions parfaites.
Une fabrication efficace, un approvisionnement sans heurts.
Des tests rigoureux, des certifications mondiales.
Une assistance rapide, un soutien continu.