Dec 24,2025
Il cavo in rame placcato alluminio (CCA) ha un'anima in alluminio rivestita con un sottile strato di rame. Questa combinazione offre il meglio dei due mondi: il ridotto peso e i vantaggi economici dell'alluminio, uniti alle buone proprietà superficiali del rame. Il modo in cui questi materiali collaborano permette di raggiungere circa il 60-70 percento della conducibilità del rame puro secondo gli standard IACS. Questo incide sensibilmente sulle prestazioni complessive. Quando la conducibilità diminuisce, la resistenza aumenta, causando spreco di energia sotto forma di calore e maggiori perdite di tensione nei circuiti. Si consideri, ad esempio, un semplice collegamento con 10 metri di cavo 12 AWG che trasporta una corrente continua di 10 ampere. In questo caso, i cavi CCA possono presentare una caduta di tensione quasi doppia rispetto ai normali cavi in rame: circa 0,8 volt invece di soli 0,52 volt. Un divario di questa entità può effettivamente causare problemi a dispositivi delicati, come quelli utilizzati negli impianti fotovoltaici o nell'elettronica automobilistica, dove livelli di tensione costanti sono essenziali.
L'CCA ha sicuramente i suoi vantaggi in termini di costo e peso, specialmente per prodotti come luci a LED o componenti automobilistici dove le serie di produzione non sono molto elevate. Ma c'è un problema: poiché conduce l'elettricità peggio del rame normale, gli ingegneri devono effettuare calcoli accurati sulla lunghezza massima dei cavi prima che diventino un rischio d'incendio. Lo strato sottile di rame attorno all'alluminio non serve affatto ad aumentare la conducibilità. Il suo scopo principale è garantire una corretta connessione con i normali raccordi in rame e prevenire i fastidiosi problemi di corrosione tra metalli diversi. Quando qualcuno cerca di spacciare l'CCA per cavo di rame vero e proprio, non sta soltanto fuorviando i clienti, ma sta anche violando le normative elettriche. L'alluminio interno semplicemente non sopporta il calore o le flessioni ripetute allo stesso modo del rame nel tempo. Chiunque lavori con impianti elettrici deve conoscere queste informazioni fin dall'inizio, soprattutto quando la sicurezza conta più del risparmio di qualche euro sui materiali.

Lo Standard Internazionale del Rame Ricotto (IACS) stabilisce come riferimento il rame puro al 100%. Il cavo in alluminio rivestito di rame (CCA) raggiunge solo il 60–70% IACS a causa della maggiore resistività intrinseca dell'alluminio. Mentre l'OFC mantiene una resistività di 0,0171 Ω·mm²/m, il CCA varia tra 0,0255–0,0265 Ω·mm²/m, aumentando la resistenza del 55–60%. Questo divario incide direttamente sull'efficienza energetica:
| Materiale | Conducibilità IACS | Resistività (Ω·mm²/m) |
|---|---|---|
| Rame Puro (OFC) | 100% | 0.0171 |
| CCA (10% Cu) | 64% | 0.0265 |
| CCA (15% Cu) | 67% | 0.0255 |
La maggiore resistività costringe il CCA a dissipare più energia sotto forma di calore durante la trasmissione, riducendo l'efficienza del sistema, specialmente in applicazioni con carico elevato o a funzionamento continuo.
La caduta di tensione illustra le differenze di prestazione nel mondo reale. Per un collegamento in corrente continua di 10 m con cavo 12 AWG che trasporta 10 A:
La caduta di tensione del 54% più elevata nel cavo CCA rischia di causare spegnimenti per sottotensione in sistemi in corrente continua sensibili. Per raggiungere le prestazioni dell'OFC, il CCA richiede cavi di sezione maggiore o collegamenti più brevi, entrambe soluzioni che ne riducono il vantaggio pratico.
Il cavo CCA offre vantaggi pratici quando la conduttività ridotta non è un problema significativo rispetto ai risparmi ottenuti sui costi e sul peso. Il fatto che conduca elettricità al 60-70 percento rispetto al rame puro ha minore importanza in applicazioni come sistemi a bassa tensione, flussi di corrente ridotti o brevi distanze di cablaggio. Pensate ad esempio a dispositivi PoE Classe A/B, alle strisce LED che le persone installano in tutta la casa, o persino al cablaggio automobilistico per funzionalità aggiuntive. Prendete ad esempio le applicazioni automotive: il fatto che il CCA pesi circa il 40 percento in meno rispetto al rame fa una grande differenza nei cablaggi dei veicoli, dove ogni grammo conta. E diciamolo, nella maggior parte delle installazioni LED servono grandi quantità di cavo, quindi la differenza di prezzo si accumula rapidamente. Finché i cavi rimangono al di sotto di circa cinque metri, la caduta di tensione rimane entro limiti accettabili per la maggior parte delle applicazioni. Ciò significa completare il lavoro senza dover sostenere i costi elevati dei materiali OFC.
La sicurezza e le buone prestazioni dipendono dalla conoscenza della distanza massima che i cablaggi elettrici possono raggiungere prima che le cadute di tensione diventino problematiche. La formula base è la seguente: Lunghezza Massima del Tratto in metri uguale alla Tolleranza alla Caduta di Tensione moltiplicata per la Sezione del Conduttore, diviso la Corrente per la Resistività per due. Vediamo cosa accade con un esempio pratico. Prendiamo un sistema LED standard a 12V che assorbe circa 5 ampere di corrente. Se ammettiamo una caduta di tensione del 3% (pari a circa 0,36 volt) e utilizziamo un cavo in alluminio ricoperto di rame da 2,5 millimetri quadrati (con resistività approssimativa di 0,028 ohm per metro), il calcolo sarà simile a questo: (0,36 per 2,5) diviso (5 per 0,028 per 2), il che dà circa 3,2 metri come lunghezza massima del tratto. Non dimenticare di verificare questi valori rispetto alle normative locali, come ad esempio il NEC Article 725 per circuiti a bassa potenza. Superare quanto indicato dai calcoli può portare a problemi seri, inclusi surriscaldamento dei cavi, degrado dell'isolamento nel tempo o addirittura guasti completi dell'apparecchiatura. Questo aspetto diventa particolarmente critico quando le condizioni ambientali sono più calde del normale o quando più cavi sono raggruppati insieme, poiché entrambe le situazioni generano un accumulo aggiuntivo di calore.
Molte persone pensano che l'effetto cosiddetto "a pelle" in qualche modo compensi i problemi legati al nucleo di alluminio del CCA. L'idea è che alle alte frequenze la corrente tenda ad accumularsi vicino alla superficie dei conduttori. Ma la ricerca dimostra il contrario. Il rame placcato con alluminio ha in realtà circa il 50-60% di resistenza in più rispetto al cavo di rame massiccio quando si tratta di corrente continua, perché l'alluminio è semplicemente meno efficiente nel condurre l'elettricità. Ciò significa che vi è una maggiore caduta di tensione lungo il cavo e che si riscalda di più quando trasporta carichi elettrici. Nei sistemi Power over Ethernet questo diventa un problema reale, poiché devono trasmettere sia dati che energia attraverso gli stessi cavi, mantenendo temperature sufficientemente basse da evitare danni.
Esiste un altro malinteso comune riguardo al rame privo di ossigeno (OFC). È vero che l'OFC ha una purezza di circa il 99,95% rispetto al rame ETP standard del 99,90%, ma la differenza reale in termini di conducibilità non è così marcata: parliamo di meno dell'1% in più sulla scala IACS. Per quanto riguarda i conduttori compositi (CCA), il problema reale non è affatto la qualità del rame. Il problema deriva dal materiale di base in alluminio utilizzato in questi compositi. Ciò che rende l'OFC una scelta valida per alcune applicazioni è in realtà la sua maggiore resistenza alla corrosione rispetto al rame standard, specialmente in condizioni difficili. Questa caratteristica è molto più rilevante nelle situazioni pratiche rispetto a minimi miglioramenti di conducibilità rispetto al rame ETP.
| Fattore | CCA WIRE | Rame Puro (OFC/ETP) |
|---|---|---|
| Conducibilità | 61% IACS (nucleo in alluminio) | 100–101% IACS |
| Risparmio di costi | costo del materiale del 30–40% inferiore | Costo base più elevato |
| Principali limitazioni | Rischio di ossidazione, incompatibilità con PoE | Miglioramento minimo della conducibilità rispetto all'ETP |
In ultima analisi, le prestazioni scadenti del cavo CCA derivano dalle proprietà fondamentali dell'alluminio, che non possono essere corrette aumentando lo spessore del rivestimento di rame o utilizzando varianti senza ossigeno. I responsabili delle specifiche dovrebbero dare priorità ai requisiti applicativi piuttosto che al marketing relativo alla purezza quando valutano la validità del CCA.
Consigli su misura, soluzioni perfette.
Produzione efficiente, approvvigionamento senza soluzione di continuità.
Test rigorosi, certificazioni globali.
Assistenza immediata, supporto continuo.