Dec 25,2025

銅被覆アルミニウムまたはCCAワイヤーは、基本的に断面の約10~15%を占める薄い銅の被膜で覆われたアルミニウム製の中心部から成っています。この組み合わせの発想はシンプルで、軽量かつ安価なアルミニウムと、表面における銅の優れた導電性という、両者の長所を活かすことを目的としています。しかし、問題点もあります。これらの金属間の接合が十分に強固でない場合、界面に微細な隙間が生じることがあります。これらの隙間は時間の経過とともに酸化し、通常の銅線と比較して電気抵抗を最大55%も増加させる可能性があります。実際の性能数値を比較すると、アルミニウムは体積全体を通じて銅ほどの電気伝導性を持たないため、CCAは導電性に関して国際退火銅標準(IACS)の約60~70%にしか達しません。この低い導電性のため、エンジニアは同じ電流を扱う場合、銅線よりも太いワイヤーを使用する必要があります。この要件は、CCAが当初魅力的であった理由である軽量性や材料コストの利点のほとんどを相殺してしまうことになります。
CCAの抵抗が増加すると、電流負荷を運ぶ際にジュール熱がより顕著になります。周囲温度が約30度に達する場合、国家電気規格(NEC)では、同様の銅線と比較してこれらの導体の電流容量を約15~20%低下させることが求められます。この調整により、絶縁材や接続部が安全限界を超えて過熱するのを防ぎます。一般的な分岐回路では、実際に使用可能な連続負荷容量が約4分の1から3分の1程度減少することを意味します。システムが最大定格の70%を超えて継続的に運転されると、アルミニウムは焼きなまし(アニーリング)と呼ばれるプロセスによって柔らかくなります。この強度の低下は導体の芯線強度に影響を与え、端子部の接続を損傷させる可能性があります。特に熱が適切に逃げられない狭い空間では、この問題はさらに悪化します。これらの材料は数ヶ月から数年にわたり劣化を進め、配線設備全体に危険なホットスポットを生じさせ、最終的には電気系統の安全性および信頼性ある性能を脅かすことになります。
CCAワイヤーは、特に最大90ワットの電力を供給できるIEEE 802.3bt規格のクラス5および6に準拠する今日のPower over Ethernet(PoE)システムと組み合わせた場合、適切に機能しません。問題は、必要なレベルよりも約55~60%高い抵抗値にあります。これにより、通常のケーブル長さにおいて深刻な電圧降下が発生し、端末機器で安定した48~57V DCを維持することが不可能になります。その後起こることも深刻です。余分な抵抗によって熱が発生し、さらに高温になったケーブルの抵抗は増大するため、温度が危険なほど上昇し続ける悪循環が生じます。これらの問題はNEC Article 800の安全規則やIEEEの仕様にも違反します。機器が全く動作しなくなる可能性があり、重要なデータが破損したり、最悪の場合、十分な電力が供給されないことで部品が永久的に損傷する恐れがあります。
50メートルを超えるケーブル配線では、CCA(銅被覆アルミニウム)線がNECの分岐回路における3%の電圧降下制限を超えてしまうことが多くなります。これにより、機器の効率的な動作ができなくなったり、敏感な電子機器の早期故障やさまざまな性能問題が発生します。10アンペアを超える電流では、NEC 310.15(B)(1)に従い、CCAは大幅な許容電流の低減が必要です。なぜなら、アルミニウムは銅ほど熱を扱うのに適していないからです。アルミニウムの融点は約660度であるのに対し、銅ははるかに高い1085度です。導体を太くしてこの問題を解決しようとすると、そもそもCCAを使用する際のコストメリットが相殺されてしまいます。実際のデータも別の事実を示しています。CCAを使用した設置では、通常の銅配線に比べて約40%多くの熱的ストレス事故が発生する傾向があります。そしてこうしたストレス現象が狭いダクト内などで起きると、誰も望まない火災の危険性が生じます。
CCAワイヤー内部のアルミニウム芯が接続点で露出すると、比較的急速に酸化が始まります。これにより高抵抗の酸化アルミニウム層が形成され、局所的な温度が約30%上昇する可能性があります。その後起こることは、信頼性の面でさらに深刻です。端子ねじが長期間にわたり一定の圧力を加えると、アルミニウムは実際には接触部から冷間で徐々に押し出されていき、接続が緩んできます。これはNEC 110.14(A)などの規定で定められている、恒久的な設置における確実で低抵抗の接合を求める要求に違反するものです。このプロセスで発生する熱はアーク障害を引き起こし、絶縁材料を劣化させます。これは火災原因に関するNFPA 921の調査報告書で頻繁に指摘されている現象です。20アンペアを超える電流を扱う回路では、通常の銅配線と比べてCCAワイヤーの問題は約5倍の速さで顕在化します。そしてこれが危険なのは、重大な損傷が発生するまで、通常の点検では明らかな兆候が現れず、不具合が静かに進行する点です。
主要な故障メカニズムには以下が含まれます:
適切な対策には、抗酸化化合物およびアルミ導体専用に明示されたトルク制御型端子が必要ですが、CCAワイヤーでは実際にはほとんど適用されていません。
熱的条件や電圧降下の制約が小さい低電力・小電流用途において、CCAワイヤーは責任を持って使用できます。これには以下のような用途が含まれます:
CCA配線は、コンセント、照明、または建物内の標準的な電気負荷を供給する回路には接続してはなりません。国家電気規格(NEC)の特に第310条では、15~20アンペアの回路での使用が禁止されています。これは、過熱、電圧の変動、および時間の経過とともに接続部が故障するといった実際の問題が発生しているためです。CCAの使用が認められている場合でも、エンジニアは配線沿线の電圧降下が3%を超えないことを確認しなければなりません。また、すべての接続がNEC 110.14(A)に規定された基準を満たしていることを保証しなければなりません。これらの仕様は、特殊な設備と適切な施工技術がなければ達成が難しく、ほとんどの請負業者がその知識を持っていません。
CCA導体において、第三者認証はオプションではなく必須です。常に公的認知された規格に基づいて有効なリストに掲載されているかを確認してください。
| 標準 | 適用範囲 | 重要な試験 |
|---|---|---|
| UL 44 | 熱硬化性樹脂絶縁電線 | 耐火性、絶縁強度 |
| UL 83 | 熱可塑性樹脂絶縁電線 | 121°C における変形抵抗 |
| CSA C22.2 No. 77 | 熱可塑性樹脂絶縁導体 | 冷間曲げ、引張強度 |
ULオンライン認証ディレクトリへの掲載は、第三者機関による検証済みであることの確認を意味します。これに対して、未掲載のCCAは、製造元の無検証ラベルとは異なり、ASTM B566付着性試験に合格する頻度が7倍低く、端子部における酸化リスクを直接的に高めます。仕様決定や施工の前には、正確な認証番号が有効で公表されている掲載内容と一致していることを確認してください。
適したアドバイスと 完璧な解決策
効率的な製造とシームレスな供給
厳格なテストとグローバル認証
迅速な支援,継続的な支援