Dec 25,2025

Жицата од бакар посребрена со алуминиум или CCA има алуминумско јдро покриено со тенок слој бакар кој претставува околу 10 до 15 проценти од вкупната напречна површина. Идејата зад оваа комбинација е едноставна – таа се обидува да ги земе најдобрите својства на двата светови: лесното и достапно алуминум, како и добрите својства за спроводливост на бакарот на површината. Но, има предизвик. Ако врската помеѓу овие метали не е доволно силна, можат да се формираат мали празнини на интерфејсот. Овие празнини со време имаат тенденција да се оксидираат и можат да је зголемат електричната отпорност за до 55% во споредба со обичните бакарни жици. Кога се погледнати реалните бројки за перформанси, CCA обично достигнува околу 60 до 70% од таканаречениот Меѓународен стандард за жолчен бакар за спроводливост, бидејќи алуминумот едноставно не спроводува електричество толку добро колку бакарот низ целиот негов волумен. Поради ова пониска спроводливост, инженерите мора да користат подебели жици кога работат со CCA за да се справат со истата количина на струја каква што би ју ја носел бакар. Оваа потреба по сè практично је поништува повеќето од предности во тежината и трошоците за материјалот што го направија CCA привлечен во првична насока.
Зголемениот отпор на CCA доведува до поизразено Џуловo загревање при пренос на електрични товари. Кога температурата на околината достигне околу 30 степени Целзиусови, Националниот електричен кодекс бара намалување на струјната способност на овие проводници за околу 15 до 20 проценти во споредба со слични бакарни жици. Оваа прилагодба помага да се спречи прегревањето на изолацијата и точките на врски над безбедните граници. За редовни гранки кола, тоа значи околу четвртина до една третина помала континуирана капацитет за употреба. Ако системите работат постојано над 70% од максималниот рејтинг, алуминиумот има тенденција да се мекне преку процес наречен отпуштање. Ова ослабување влијае на јадрената чврстина на проводникот и може да ја оштети врската на краевите. Проблемот се зголемува во тесни простори каде што топлината не може правилно да се распрсне. Додека материјалите деградираат во текот на месеци и години, тие создаваат опасни точки на прегревање низ инсталациите, што конечнo ја загрозува како безбедносната норма така и постојаната перформанса на електричните системи.
CCA жицата едноставно не функционира добро со денешните системи за напојување преку Етернет (PoE), особено оние што следат стандарди IEEE 802.3bt за класи 5 и 6 кои можат да обезбедат до 90 вати. Проблемот потекнува од нивото на отпор кое е околу 55 до 60 проценти повисоко од она што ни е потребно. Ова создава сериозен пад на напонот низ редовните должини на кабелот, што го прави невозможно одржувањето на стабилниот напон од 48-57 волти DC потребен на уредите на другиот крај. Тоа што следи е исто така доста лошо. Додатниот отпор произведува топлина, што го влошува состојбата бидејќи покалени кабли имаат уште поголем отпор, создавајќи циклус во кој температурите се зголемуваат опасно многу. Овие проблеми се спротивни на безбедносните правила NEC Article 800 како и на IEEE спецификациите. Опремата може сосема да престане да работи, важни податоци може да бидат корумпирани или во најлош случај, компонентите може да доживеат трајни штети кога нема доволно напојување.
Кабелите со должина поголема од 50 метри често го надминуваат лимитот од 3% за пад на напон според NEC за разгранети колиња кога се користи CCA. Ова создава проблеми како неефикасна работа на опремата, прематури неуспеси на чувствителната електроника и разни проблеми со перформансите. На ниво на струја поголемо од 10 ампери, CCA бара значително намалување на амперност според NEC 310.15(B)(1). Зошто? Бидејќи алуминиумот не го отпорува топлината толку добро колку бакарот. Неговата топка на топење е околу 660 степени Целзиус, споредено со многу повисоката темперација од 1085 степени кај бакарот. Обидот да се реши ова со зголемување на проводниците во суштина ја поништува билоја штеда при употреба на CCA. И реалните податоци покажуваат друга приказна. Инсталациите со CCA имаат склопност кон околу 40% повеќе термички напрегнати настани во споредба со стандардното бакарно електрично инсталација. И кога овие настани се случуваат во стеснети простори на кабелски водачи, тие создаваат вистинска опасност од пожар, што никој не сака.
Кога алуминиумскиот јадро внатре во CCA жицата ќе се открие на точките на спој, започнува брзо оксидирање. Ова создава слој од алуминиум оксид кој има висок отпор и може да ги зголеми локалните температури за околу 30%. Она што следи е уште послабо за пофаливоста. Кога завртковите на терминалите применуваат постојан притисок со текот на времето, алуминиумот всушност тече надвор како студено од контактните површини, поради што врските постепено се раслабуваат. Ова ги крши барањата од кодексот како NEC 110.14(A) кои предвидуваат сигурни, споеви со низок отпор за трајни инсталации. Температурата што се развива преку овој процес води до лакови и распаѓање на изолациските материјали, нешто што често се споменува во истражувањата NFPA 921 за причините за пожари. Кај струјни кола кои управуваат со повеќе од 20 ампери, проблемите со CCA жиците се појавуваат околу пет пати побрзо во споредба со стандардните бакарни жици. И еве што го прави ова опасно — овие кварови често се развиваат безгласно, не давајќи очигледни знаци за време на редовни проверки сè додека сериозната штета не се случи.
Клучни механизми на откажување вклучуваат:
Соодветното спречување бара антиоксидантни соединенија и терминали со контролиран момент на затегнување, специфично наведени за алуминиумски проводници — мерки што ретко се применуваат во пракса кај CCA жици.
CCA жицата може одговорно да се користи во апликации со ниска моќност и мал струја каде што термичките ограничувања и падот на напон се минимални. Овие вклучуваат:
CCA жичењето не треба да се користи во кола кои обезбедуваат струја за утици, осветлување или други стандардни електрични товари во зградата. Националниот електричен кодекс, специфично Член 310, забранува негова употреба во кола од 15 до 20 ампери бидејќи постоеле реални проблеми со прегревање, флуктуации на напон и распаѓање на врските со текот на времето. Кога станува збор за ситуации во кои е дозволена употреба на CCA, инженерите мора да проверат дека падот на напонот долж линијата не е поголем од 3%. Тие исто така мора да се осигураат дека сите врски ги исполнуваат стандардите определени во NEC 110.14(A). Овие спецификации се доста строги за постигнување без посебна опрема и соодветни техники на инсталирање со кои повеќето поддржувачи не се запознаени.
Сертификување од трета страна е задолжително – не опциско – за билој CCA проводник. Секогаш потврдувајте активниот листинг според признати стандарди:
| Стандард | Област за применение | Клучен тест |
|---|---|---|
| UL 44 | Жица со изолација од термо-сет | Отпорност на пламен, диелектрична јтврдост |
| UL 83 | Жица со изолација од термопласт | Отпорност на деформација на 121°C |
| CSA C22.2 Бр. 77 | Спроводници со термопластична изолација | Хладно свлегување, отпорност на издирање |
Листингот во UL Online Certifications Directory потврдува независна валидација—за разлика од непотврдени ознаки од производител. Нелистиран CCA не успева во тестовите за прилиепување според ASTM B566 седум пати почесто од сертифицираниот производ, што директно го зголемува ризикот од оксидација на терминалите. Пред да се специфицира или инсталира, потврдете дека точниот број на сертификација одговара на активен, објавен листинг.
Соодветни совети, совршено решенија.
Ефикасно производство, безпроблемно снабдување.
Ригорозни тестови, глобални сертификати.
Брза помош, постојана поддршка.