Dec 25,2025

Koperomklaad aluminium of CCA-draad heeft in wezen een aluminium kern die is bedekt met een dunne koperlaag die ongeveer 10 tot 15 procent van de totale dwarsdoorsnede uitmaakt. Het idee achter deze combinatie is eigenlijk eenvoudig: het probeert het beste van beide werelden te combineren—lichtgewicht en betaalbaar aluminium, plus de goede geleidings eigenschappen van koper aan het oppervlak. Maar er zit een addertje onder het gras. Als de binding tussen deze metalen niet sterk genoeg is, kunnen kleine openingen ontstaan aan de grens tussen beide materialen. Deze openingen neigen er met de tijd toe om te oxideren en kunnen de elektrische weerstand verhogen met tot wel 55% in vergelijking met gewone koperdraden. Als we kijken naar de daadwerkelijke prestatiecijfers, bereikt CCA doorgaans ongeveer 60 tot 70% van wat wordt genoemd het International Annealed Copper Standard voor geleiding, omdat aluminium nu eenmaal minder goed elektriciteit geleidt dan koper over het gehele volume. Vanwege deze lagere geleiding moeten ingenieurs diktere draden gebruiken wanneer ze met CCA werken om dezelfde hoeveelheid stroom te geleiden als koper zou doen. Deze vereiste om vrijwel alle gewichts- en materiaalkostenvoordelen teniet te doen die CCA in de eerste plaats aantrekkelijk maakten.
De toegenomen weerstand van CCA leidt tot een grotere Joule-verwarming bij het geleiden van elektrische belastingen. Wanneer de omgevingstemperatuur ongeveer 30 graden Celsius bereikt, vereist de National Electrical Code dat de stroomcapaciteit van deze geleiders met ongeveer 15 tot 20 procent wordt verminderd in vergelijking met soortgelijke koperdraden. Deze aanpassing helpt voorkomen dat de isolatie en verbindingspunten oververhitten boven veilige limieten. Voor standaard eindcircuiten betekent dit dat ongeveer een kwart tot een derde minder continue belastingscapaciteit beschikbaar is voor daadwerkelijk gebruik. Als systemen langdurig boven 70% van hun maximale beoordeling draaien, heeft aluminium de neiging te verzachten via een proces dat annullering wordt genoemd. Deze verzwakking beïnvloedt de kernsterkte van de geleider en kan verbindingen bij aansluitpunten beschadigen. Het probleem wordt erger in beperkte ruimtes waar warmte niet goed kan ontsnappen. Naarmate deze materialen verslechtering over maanden en jaren, ontstaan er gevaarlijke hete plekken in installaties, wat uiteindelijk zowel veiligheidsnormen als betrouwbare prestaties van elektrische systemen in gevaar brengt.
CCA-draad werkt gewoon niet goed met de huidige Power over Ethernet (PoE)-systemen, vooral die die voldoen aan de IEEE 802.3bt-standaarden voor Klassen 5 en 6, die tot 90 watt kunnen leveren. Het probleem komt neer op weerstandsniveaus die ongeveer 55 tot 60 procent hoger zijn dan wat nodig is. Dit veroorzaakt aanzienlijke spanningsdalingen over standaard kabellengtes, waardoor het onmogelijk wordt om de stabiele 48-57 volt gelijkstroom te handhaven die aan de apparaten aan de andere kant nodig is. Wat daarna gebeurt, is ook erg slecht. De extra weerstand genereert warmte, wat de situatie verergert, omdat heetere kabels nog meer weerstand bieden, waardoor een vicieuze cyclus ontstaat waarin temperaturen gevaarlijk blijven stijgen. Deze problemen overtreden ook de veiligheidsregels van NEC Artikel 800 evenals de IEEE-specificaties. Apparatuur kan volledig stoppen met werken, belangrijke gegevens kunnen beschadigd raken, of in het ergste geval, onderdelen blijvend beschadigd raken wanneer ze niet voldoende stroom ontvangen.
Kabels langer dan 50 meter brengen CCA vaak boven de 3% spanningsvalgrens van de NEC voor aftakelingskringen. Dit leidt tot problemen zoals inefficiënte werking van apparatuur, vroegtijdige defecten bij gevoelige elektronica en diverse prestatieproblemen. Bij stroomsterktes boven de 10 ampère zijn volgens NEC 310.15(B)(1) aanzienlijke ampaciteitsverlagingen nodig voor CCA. Waarom? Omdat aluminium warmte gewoon niet zo goed verwerkt als koper. Het smeltpunt ligt rond de 660 graden Celsius, vergeleken met het veel hogere smeltpunt van koper van 1085 graden. Proberen dit op te lossen door geleiders groter te maken, heft in wezen alle kostenbesparingen van CCA weer op. Ook de praktijkgegevens vertellen een andere geschiedenis. Installaties met CCA hebben ongeveer 40% meer thermische belastingsincidenten dan reguliere koperbedrading. En wanneer deze belastingssituaties zich voordoen in beperkte buisleidingruimtes, ontstaat een reëel brandgevaar dat niemand wil.
Wanneer de aluminiumkern binnen CCA-kabels blootgesteld raakt op aansluitpunten, begint deze vrij snel te oxideren. Hierdoor ontstaat een laag aluminiumoxide met hoge weerstand, waardoor de plaatselijke temperatuur ongeveer 30% kan stijgen. Wat daarna gebeurt, is nog erger voor betrouwbaarheidsproblemen. Wanneer de klemmenbouten over tijd constante druk uitoefenen, stroomt het aluminium koud uit de contactgebieden weg, waardoor de verbindingen geleidelijk losraken. Dit schendt voorschriften zoals NEC 110.14(A), die veilige, laagweerstandige verbindingen vereisen voor permanente installaties. De door dit proces gegenereerde warmte leidt tot lichtboogfouten en breekt isolatiematerialen af, iets wat vaak wordt genoemd in NFPA 921-onderzoeken naar oorzaken van brand. Voor circuits die meer dan 20 ampère leveren, treden problemen met CCA-kabels ongeveer vijf keer sneller op dan bij standaard koperbedrading. En dit maakt het gevaarlijk: deze storingen ontwikkelen zich vaak stilletjes, zonder duidelijke signalen tijdens normale inspecties, totdat ernstige schade is opgetreden.
Belangrijke mislukkingsmechanismen zijn:
Een adequate mitigatie vereist antioxidantverbindingen en momentgestuurde aansluitingen die specifiek zijn goedgekeurd voor aluminiumgeleiders — maatregelen die in de praktijk zelden worden toegepast bij CCA-draad.
CCA-draad kan verantwoord worden gebruikt in laagvermogen-, laagstroomtoepassingen waarin thermische beperkingen en spanningsval minimaal zijn. Dit omvat:
CCA-bedrading mag niet worden gebruikt in kringen die wandcontactdozen, verlichting of andere standaard elektrische belastingen in het gebouw voeden. De National Electrical Code, specifiek Artikel 310, verbiedt het gebruik ervan in 15 tot 20 ampère-kringen omdat er daadwerkelijk problemen zijn geweest met oververhitting, spanningsfluctuaties en loslatende verbindingen over tijd. Wanneer CCA wel is toegestaan, moeten ingenieurs controleren of de spanningsval over de lijn niet meer bedraagt dan 3%. Ze moeten ook zorgen dat alle verbindingen voldoen aan de voorschriften in NEC 110.14(A). Deze specificaties zijn behoorlijk lastig te halen zonder speciale apparatuur en correcte installatietechnieken, die de meeste aannemers niet goed kennen.
Derdepartijcertificering is essentieel — niet optioneel — voor elke CCA-geleider. Controleer altijd de actieve registratie tegen erkende normen:
| Standaard | Toepassingsgebied | Kritieke test |
|---|---|---|
| UL 44 | Draad met thermohardende isolatie | Vlamvertragend, diëlektrische sterkte |
| UL 83 | Draad met thermoplastische isolatie | Vervormingsweerstand bij 121 °C |
| CSA C22.2 Nr. 77 | Geleiders met thermoplastische isolatie | Koude buiging, treksterkte |
Lijsting in de UL Online Certificeringsdirectory bevestigt onafhankelijke validatie—in tegenstelling tot niet-geverifieerde fabikantsetiketten. Niet-gelijst CCA mislukt zeven keer vaker de ASTM B566 hechtingstest dan gecertiseerd product, wat direct het oxidatierisico bij aansluitingen verhoogt. Controleer voordat u specificatieert of installeert of het exacte certificienummer overeenkomt met een actieve, gepubliceerde lijsting.
Op maat gemaakte adviezen, perfecte oplossingen.
Efficiënte productie, naadloze levering.
Strenge testen, wereldwijde certificeringen.
Vinnige hulp, continue ondersteuning.