Dec 24,2025
El cable de aluminio recubierto de cobre (CCA) tiene un núcleo de aluminio envuelto en un revestimiento delgado de cobre. Esta combinación ofrece lo mejor de ambos mundos: los beneficios de ligereza y costo del aluminio, además de las buenas propiedades superficiales del cobre. La forma en que estos materiales trabajan juntos significa que obtenemos alrededor del 60 al 70 por ciento de la conductividad del cobre puro según los estándares IACS. Y esto marca una diferencia real en el rendimiento. Cuando la conductividad disminuye, la resistencia aumenta, lo que provoca pérdida de energía en forma de calor y mayores caídas de voltaje en los circuitos. Por ejemplo, en una configuración sencilla con 10 metros de cable 12 AWG transportando 10 amperios de corriente continua, los cables CCA podrían presentar casi el doble de caída de voltaje en comparación con los cables de cobre convencionales: aproximadamente 0,8 voltios frente a solo 0,52 voltios. Este tipo de diferencia puede causar problemas reales en equipos delicados, como los utilizados en instalaciones de energía solar o en electrónica automotriz, donde niveles de voltaje constantes son esenciales.
El CCA definitivamente tiene sus ventajas en términos de costo y peso, especialmente para aplicaciones como luces LED o piezas de automóviles donde las tiradas de producción no son muy grandes. Pero aquí está el problema: como conduce la electricidad peor que el cobre convencional, los ingenieros deben hacer cálculos rigurosos sobre qué longitud pueden tener esos cables antes de convertirse en un riesgo de incendio. La capa delgada de cobre alrededor del aluminio no está ahí para mejorar la conductividad. Su función principal es garantizar que todo se conecte adecuadamente con accesorios de cobre estándar y prevenir los problemas de corrosión entre metales. Cuando alguien intenta presentar el CCA como cable de cobre real, no solo está engañando a los clientes, sino que también está violando los códigos eléctricos. El núcleo de aluminio sencillamente no maneja el calor ni la flexión repetida de la misma manera que el cobre a largo plazo. Cualquiera que trabaje con sistemas eléctricos realmente necesita conocer esta información desde el principio, especialmente cuando la seguridad importa más que ahorrar unos pocos dólares en materiales.

El Estándar Internacional de Cobre Recocido (IACS) establece como referencia la conductividad del cobre puro al 100 %. El cable de aluminio con revestimiento de cobre (CCA) alcanza solo entre el 60 y 70 % IACS debido a la mayor resistividad inherente del aluminio. Mientras que el OFC mantiene una resistividad de 0,0171 Ω·mm²/m, el CCA varía entre 0,0255 y 0,0265 Ω·mm²/m, lo que aumenta la resistencia en un 55 a 60 %. Esta diferencia afecta directamente la eficiencia energética:
| Material | Conductividad IACS | Resistividad (Ω·mm²/m) |
|---|---|---|
| Cobre puro (OFC) | 100% | 0.0171 |
| CCA (10 % Cu) | 64% | 0.0265 |
| CCA (15 % Cu) | 67% | 0.0255 |
La mayor resistividad obliga al CCA a disipar más energía en forma de calor durante la transmisión, reduciendo la eficiencia del sistema, especialmente en aplicaciones con alta carga o funcionamiento continuo.
La caída de voltaje ejemplifica las diferencias de rendimiento en condiciones reales. Para una instalación de corriente continua (DC) de 10 m con cable 12 AWG que transporta 10 A:
La caída de voltaje un 54 % mayor en el cable CCA corre el riesgo de activar apagados por subvoltaje en sistemas DC sensibles. Para igualar el rendimiento del OFC, el CCA requiere cables de mayor sección o recorridos más cortos, ambas opciones que reducen su ventaja práctica.
El cable CCA tiene beneficios reales cuando la conductividad reducida no es tan importante comparada con lo que ahorramos en costos y peso. El hecho de que conduzca electricidad alrededor del 60 al 70 por ciento respecto al cobre puro importa menos en aplicaciones como sistemas de baja tensión, flujos de corriente pequeños o recorridos cortos de cable. Piense en equipos PoE Clase A/B, en esas tiras de luces LED que la gente instala por toda la casa, o incluso en el cableado automotriz para funciones adicionales. Tomemos por ejemplo las aplicaciones automotrices. El hecho de que el CCA pese aproximadamente un 40 por ciento menos que el cobre marca una gran diferencia en los arneses de cableado vehicular, donde cada gramo cuenta. Y seamos honestos, la mayoría de las instalaciones LED requieren grandes cantidades de cable, por lo que la diferencia de precio aumenta rápidamente. Mientras los cables no superen los cinco metros aproximadamente, la caída de tensión permanece dentro de rangos aceptables para la mayoría de las aplicaciones. Esto significa terminar el trabajo sin tener que gastar de más en materiales OFC costosos.
La seguridad y un buen rendimiento dependen de conocer hasta dónde pueden extenderse las instalaciones eléctricas antes de que las caídas de voltaje se vuelvan problemáticas. La fórmula básica es la siguiente: Longitud Máxima de Recorrido en metros es igual a la Tolerancia de Caída de Voltaje multiplicada por el Área del Conductor, dividida por la Corriente multiplicada por la Resistividad y por dos. Veamos qué sucede con un ejemplo del mundo real. Tomemos una configuración estándar de LED a 12V que consume aproximadamente 5 amperios de corriente. Si permitimos una caída de voltaje del 3% (lo que equivale a unos 0,36 voltios), y utilizamos un cable de aluminio recubierto de cobre de 2,5 milímetros cuadrados (con una resistividad de aproximadamente 0,028 ohmios por metro), nuestro cálculo sería algo así: (0,36 multiplicado por 2,5) dividido por (5 multiplicado por 0,028 multiplicado por 2) da aproximadamente 3,2 metros como longitud máxima de recorrido. No olvide verificar estos valores según las regulaciones locales, como el Artículo 725 del NEC para circuitos que transportan niveles de potencia más bajos. Excederse más allá de lo que sugiere el cálculo puede provocar problemas graves, como el sobrecalentamiento de los cables, la degradación progresiva del aislamiento o incluso la falla total del equipo. Esto resulta especialmente crítico cuando las condiciones ambientales son más cálidas de lo normal o cuando varios cables están agrupados juntos, ya que ambas situaciones generan un exceso de acumulación de calor.
Muchas personas piensan que el llamado "efecto piel" de alguna manera compensa los problemas del núcleo de aluminio en los cables CCA. La idea es que a altas frecuencias, la corriente tiende a concentrarse cerca de la superficie de los conductores. Pero las investigaciones demuestran lo contrario. El aluminio recubierto de cobre tiene aproximadamente un 50-60 % más de resistencia con corriente continua en comparación con el cable de cobre macizo, porque el aluminio simplemente no conduce tan bien la electricidad. Esto significa que hay una mayor caída de voltaje a través del cable y este se calienta más cuando transporta cargas eléctricas. Para instalaciones Power over Ethernet, esto se convierte en un problema real, ya que necesitan transmitir tanto datos como energía a través de los mismos cables manteniéndolos lo suficientemente fríos para evitar daños.
Existe otra idea errónea común sobre el cobre libre de oxígeno (OFC). Es cierto que el OFC tiene una pureza de aproximadamente 99,95 % en comparación con el cobre ETP común del 99,90 %, pero la diferencia real en conductividad no es tan grande: estamos hablando de menos del 1 % mejor en la escala IACS. En lo que respecta a los conductores compuestos (CCA), el problema real no radica para nada en la calidad del cobre. El problema proviene del material base de aluminio utilizado en estos compuestos. Lo que hace que el OFC sea digno de consideración para algunas aplicaciones es, en realidad, su capacidad para resistir mucho mejor la corrosión que el cobre estándar, especialmente en condiciones adversas. Esta propiedad es mucho más importante en situaciones prácticas que las pequeñas mejoras de conductividad frente al cobre ETP.
| El factor | El cable de la CCA | Cobre Puro (OFC/ETP) |
|---|---|---|
| Conductividad | 61 % IACS (núcleo de aluminio) | 100–101 % IACS |
| Ahorro de costes | 30–40 % menor costo de material | Costo base más alto |
| Las principales limitaciones | Riesgo de oxidación, incompatibilidad con PoE | Ganancia mínima en conductividad frente a ETP |
En última instancia, las diferencias de rendimiento del cable CCA se derivan de las propiedades fundamentales del aluminio, no son corregibles mediante el grosor del chapado de cobre ni variantes libres de oxígeno. Los especificadores deben priorizar los requisitos de la aplicación sobre la comercialización de la pureza al evaluar la viabilidad del CCA.
Consejos a medida, soluciones perfectas.
Fabricación eficiente, suministro sin problemas.
Pruebas rigurosas, certificaciones globales.
Asistencia inmediata, apoyo continuo.