Dec 25,2025

Kabel Tembaga Clad Aluminum atau CCA pada dasarnya memiliki inti aluminium yang dilapisi lapisan tipis tembaga yang membentuk sekitar 10 hingga 15 persen dari keseluruhan penampang. Ide di balik kombinasi ini cukup sederhana, yaitu untuk mendapatkan keunggulan dari kedua dunia: aluminium yang ringan dan terjangkau, ditambah sifat konduktivitas tembaga yang baik pada permukaan. Namun, ada kendalanya. Jika ikatan antara kedua logam ini tidak cukup kuat, celah-celah kecil dapat terbentuk di antarmuka. Celah-celah ini cenderung teroksidasi seiring waktu dan dapat meningkatkan resistansi listrik hingga 55% dibandingkan kabel tembaga biasa. Ketika dilihat dari angka kinerja aktual, CCA biasanya mencapai sekitar 60 hingga 70% dari yang disebut Standar Tembaga Dianil Internasional untuk konduktivitas, karena aluminium tidak menghantarkan listrik sebaik tembaga sepanjang volumenya. Karena konduktivitas yang lebih rendah ini, insinyur perlu menggunakan kabel yang lebih tebal saat bekerja dengan CCA agar mampu menghantarkan arus listrik yang sama seperti tembaga. Kebutuhan ini pada dasarnya menghilangkan sebagian besar keuntungan dari segi berat dan biaya material yang membuat CCA menarik sejak awal.
Peningkatan hambatan pada konduktor CCA menyebabkan pemanasan Joule yang lebih signifikan saat membawa beban listrik. Ketika suhu sekitar mencapai sekitar 30 derajat Celsius, National Electrical Code mengharuskan pengurangan kapasitas arus konduktor ini sebesar kira-kira 15 hingga 20 persen dibandingkan dengan kabel tembaga sejenis. Penyesuaian ini membantu mencegah isolasi dan titik sambungan dari terlalu panas melebihi batas aman. Untuk sirkuit cabang biasa, ini berarti sekitar seperempat hingga sepertiga lebih rendah dari kapasitas beban kontinu yang tersedia untuk penggunaan aktual. Jika sistem beroperasi secara konsisten di atas 70% dari nilai maksimumnya, aluminium cenderung melunak melalui proses yang disebut annealing. Pelemahan ini memengaruhi kekuatan inti konduktor dan dapat merusak sambungan pada titik akhir. Masalah ini semakin memburuk di ruang sempit di mana panas tidak dapat keluar dengan baik. Seiring degradasi material selama bulan dan tahun, mereka menciptakan titik-titik panas berbahaya di seluruh instalasi, yang pada akhirnya mengancam standar keselamatan maupun kinerja yang andal dalam sistem kelistrikan.
Kabel CCA tidak bekerja dengan baik pada sistem Power over Ethernet (PoE) saat ini, terutama yang mengikuti standar IEEE 802.3bt untuk Kelas 5 dan 6 yang mampu mengirim daya hingga 90 watt. Permasalahannya terletak pada tingkat hambatan yang sekitar 55 hingga 60 persen lebih tinggi dari yang dibutuhkan. Hal ini menyebabkan penurunan tegangan yang signifikan sepanjang panjang kabel biasa, sehingga mustahil untuk mempertahankan tegangan DC stabil sebesar 48-57 volt yang dibutuhkan oleh perangkat di ujung lainnya. Akibat selanjutnya juga cukup buruk. Hambatan tambahan menghasilkan panas, yang memperparah kondisi karena kabel yang lebih panas memiliki hambatan yang semakin tinggi, menciptakan siklus setan di mana suhu terus meningkat ke tingkat berbahaya. Permasalahan ini melanggar peraturan keselamatan NEC Article 800 maupun spesifikasi IEEE. Peralatan bisa berhenti bekerja sama sekali, data penting berpotensi rusak, atau skenario terburuk, komponen mengalami kerusakan permanen karena tidak menerima daya yang cukup.
Kabel yang dipasang lebih dari 50 meter sering kali membuat CCA melebihi batas penurunan tegangan 3% menurut NEC untuk sirkuit cabang. Hal ini menimbulkan masalah seperti operasi peralatan yang tidak efisien, kerusakan dini pada elektronik sensitif, serta berbagai masalah kinerja. Pada arus di atas 10 ampere, CCA memerlukan pengurangan kapasitas arus yang signifikan sesuai NEC 310.15(B)(1). Mengapa? Karena aluminium tidak sebaik tembaga dalam menghantarkan panas. Titik leburnya sekitar 660 derajat Celsius dibandingkan dengan tembaga yang jauh lebih tinggi, yaitu 1085 derajat. Mencoba mengatasi hal ini dengan memperbesar ukuran konduktor pada dasarnya menghilangkan manfaat hemat biaya dari penggunaan CCA sejak awal. Data lapangan juga menunjukkan cerita lain. Instalasi dengan CCA cenderung mengalami kejadian stres termal sekitar 40% lebih banyak dibandingkan kabel tembaga biasa. Dan ketika kejadian stres ini terjadi di dalam ruang conduit yang sempit, mereka menciptakan bahaya kebakaran nyata yang tidak diinginkan siapa pun.
Ketika inti aluminium di dalam kabel CCA terbuka di titik-titik sambungan, oksidasi akan segera terjadi dengan cepat. Hal ini membentuk lapisan aluminium oksida yang memiliki hambatan tinggi dan dapat meningkatkan suhu lokal sekitar 30%. Kejadian selanjutnya bahkan lebih buruk bagi masalah keandalan. Ketika sekrup terminal memberikan tekanan konstan dalam jangka waktu lama, aluminium secara perlahan mengalir keluar secara dingin dari area kontak, menyebabkan sambungan semakin longgar. Ini melanggar persyaratan kode seperti NEC 110.14(A) yang menetapkan sambungan harus aman dan berhambatan rendah untuk instalasi permanen. Panas yang dihasilkan melalui proses ini menyebabkan kesalahan busur (arc fault) dan merusak bahan isolasi, sesuatu yang sering disebutkan dalam investigasi NFPA 921 mengenai penyebab kebakaran. Untuk sirkuit yang menangani arus lebih dari 20 ampere, masalah pada kabel CCA muncul sekitar lima kali lebih cepat dibandingkan kabel tembaga biasa. Dan inilah yang membuatnya berbahaya—kegagalan ini sering berkembang tanpa suara, tidak menunjukkan tanda-tanda jelas selama pemeriksaan rutin hingga kerusakan serius terjadi.
Mekanisme kegagalan utama meliputi:
Pencegahan yang tepat memerlukan senyawa antioksidan dan terminal yang dikendalikan torsi yang secara khusus terdaftar untuk konduktor aluminiumâlangkah-langkah yang jarang diterapkan dalam praktik dengan kabel CCA.
Kabel CCA dapat digunakan secara bertanggung jawab pada aplikasi daya rendah dan arus rendah di mana batasan panas dan penurunan tegangan minimal. Ini mencakup:
Kabel CCA tidak boleh digunakan pada sirkuit yang mengalirkan daya ke stopkontak, lampu, atau beban listrik standar lainnya di sekitar bangunan. National Electrical Code, khususnya Pasal 310, melarang penggunaannya pada sirkuit 15 hingga 20 amp karena telah terjadi masalah nyata seperti terlalu panas, fluktuasi tegangan, dan koneksi yang gagal seiring waktu. Dalam situasi di mana penggunaan CCA diperbolehkan, insinyur harus memastikan penurunan tegangan tidak melebihi 3% sepanjang jalur. Mereka juga harus memastikan semua koneksi memenuhi standar yang ditetapkan dalam NEC 110.14(A). Spesifikasi ini cukup sulit dipenuhi tanpa peralatan khusus dan teknik pemasangan yang benar, yang kebanyakan kontraktor tidak familiar dengannya.
Sertifikasi pihak ketiga adalah penting—bukan opsional—untuk setiap konduktor CCA. Selalu verifikasi daftar aktif terhadap standar yang diakui:
| Standar | Ru lingkup | Uji Kritis |
|---|---|---|
| UL 44 | Kabel terisolasi termoset | Tahan api, kekuatan dielektrik |
| UL 83 | Kabel terisolasi termoplastik | Tahan deformasi pada 121°C |
| CSA C22.2 No. 77 | Konduktor terisolasi termoplastik | Tekuk dingin, kekuatan tarik |
Daftar dalam Direktori Sertifikasi Online UL mengonfirmasi validasi independen—tidak seperti label pabrikan yang tidak diverifikasi. CCA yang tidak terdaftar gagal dalam pengujian adhesi ASTM B566 tujuh kali lebih sering dibandingkan produk bersertifikat, secara langsung meningkatkan risiko oksidasi pada koneksi. Sebelum menentukan spesifikasi atau memasang, pastikan nomor sertifikasi tepat sesuai dengan daftar yang aktif dan dipublikasikan.
Saran yang disesuaikan, solusi yang cocok.
Produksi yang efisien, pasokan yang lancar.
Pengujian ketat, sertifikasi global.
Bantuan segera, dukungan berkelanjutan.