Aug 06,2025

سلك الألومنيوم المطلي بالنحاس أو ما يُعرف بسلك CCA يحتوي في الأساس على مركز من الألومنيوم مغطى بطبقة رقيقة من النحاس. ما تقوم به هذه التركيبة هو الجمع بين خفة وزن الألومنيوم، الذي يزن حوالي 30 بالمئة أقل من النحاس العادي، مع خصائص التوصيل السطحي الأفضل للنحاس. والنتيجة؟ أداء كهربائي يكاد يكون مماثلاً لأداء الأسلاك النحاسية الصلبة، ولكن باستخدام 60 إلى 70 بالمئة أقل من كمية النحاس الفعلية وفقًا لتقديرات شركة Wire Technology International من العام الماضي. ثم هناك سلك CCAM الذي يطور هذه الفكرة أكثر. تستخدم هذه الأسلاك طرق ربط محسّنة بحيث لا تنفصل طبقات التغليف عند ثنيها ذهابًا وإيابًا عدة مرات. مما يجعلها أكثر موثوقية بكثير في التطبيقات التي تتعرض فيها الأسلاك للحركة المستمرة أو يتم نقلها باستمرار.
عندما يستبدل المصنعون حوالي 90 بالمائة من كتلة الموصل بدلًا من استخدام النحاس بالألمنيوم، فإنهم ينتهي بهم الأمر باستخدام كمية أقل بكثير من النحاس، ومع ذلك يحصلون على ما يقارب 85 إلى 90 بالمائة من الأداء الكهربائي الذي يوفره النحاس الخالص. بالنسبة لمشتريات الكابلات الكبيرة التي تزيد عن 1000 متر في الطول، فهذا يعني أن الشركات توفر حوالي 40 بالمائة من تكاليف المواد وفقًا لتقرير مجلة Cable Manufacturing Quarterly الصادرة السنة الماضية. الشيء المثير للاهتمام هو كيف أن طبقة التغليف النحاسي تقاوم الصدأ بشكل أفضل مقارنةً بأسلاك الألمنيوم العادية. وهذا يجعل كابلات CCAM تدوم لفترة أطول، خاصةً عندما تُثبت في الأماكن التي تتعرض فيها لمشكلة الرطوبة أو التعرض للمواد الكيميائية.
يتمتع CCAM بتصنيف توصيل كهربائي يبلغ حوالي 58.5 MS/م، مما يضعه في نفس مستوى النحاس الخالص الذي يتراوح بين حوالي 58 إلى ما يقارب 60 MS/م. تبدو الأرقام أفضل بكثير مما نحصل عليه من الفولاذ المطلي بالنحاس، والذي عادة ما يتراوح بين 20 إلى 30 MS/م. بالنسبة للترددات أعلى من 3 GHz، ما يزال معظم المهندسين يفضلون استخدام النحاس الخالص كخيار أولي. ولكن عند النظر في الأنظمة العريضة النطاق التي تعمل تحت 1.5 GHz، فإن مادة CCAM تعمل بشكل جيد في الممارسة العملية. ما يميز هذه المادة هو توازنها الجيد بين الأداء والادخار المالي الحقيقي، إضافة إلى خفة وزنها. ولذلك، يتجه العديد من الشركات إلى استخدام CCAM في تطبيقات مثل الاتصالات الأخيرة من الشبكة إلى المبنى أو بين المنشآت، حيث لا تؤدي كمية صغيرة من فقد الإشارة إلى مشاكل كبيرة.
تجمع سلك CCAM بين قلب من الألومنيوم وغطاء من النحاس في تصميمها الهجين، مما يعني أن الحاجة إلى النحاس أقل بنسبة تتراوح بين 40 إلى 60 بالمائة مقارنةً بالأسلاك النحاسية الصلبة التقليدية. وعلى الرغم من استخدام كمية أقل من المواد، إلا أنه يحتفظ بما يقارب 90 بالمائة من الخصائص التي تجعل النحاس ممتازًا في توصيل الكهرباء. وللمصنعين الذين ينتجون هذه الأسلاك بكميات كبيرة، فإن هذا يترجم إلى وفورات حقيقية في التكلفة. حيث تنخفض تكاليف الإنتاج ما بين 18 إلى 32 دولارًا لكل ألف قدم يتم إنتاجها، وهو ما يضيف الكثير من التوفير بسرعة عندما تحتاج شركات الاتصالات إلى تركيب شبكات ضخمة عبر المناطق المختلفة. وهناك فائدة إضافية أيضًا: نظرًا لأن كابلات CCAM أخف بنسبة 30 بالمائة تقريبًا مقارنةً بالكابلات التقليدية، فإن شحنها يصبح أقل تكلفة أيضًا. وقد أفادت شركات الشحن والخدمات اللوجستية بوفر يتراوح بين 2.50 دولار إلى ما يقارب 5 دولارات لكل بكرة خلال النقل الطويل عبر البلاد، مما يجعل الميزانيات المخصصة للنقل تمتد أكثر دون التفريط في معايير الجودة.
تقلبت أسعار النحاس بشكل كبير بنسبة تقارب 54٪ منذ عام 2020، مما يجعل سلك CCAM خيارًا جذابًا للشركات التي ترغب في حماية نفسها من هذه التقلبات. يتميز الألمنيوم باستقرار أكبر بكثير، حيث كانت التغيرات في أسعاره أقل بنسبة 18٪ مقارنة بالنحاس وفقًا لبيانات LME من العام الماضي. يساعد هذا الاستقرار الشركات المصنعة على الحفاظ على تكاليف متوقعة عند توقيع العقود طويلة الأجل. تشهد الشركات التي تتحول إلى CCAM تكاليف غير متوقعة تقل بنسبة 22٪ تقريبًا خلال المشاريع الكبيرة. فكر في شيء مثل نشر شبكات 5G أو توسيع نطاق الإنترنت عريض النطاق عبر مناطق بأكملها حيث تحتاج إلى عشرات الآلاف من الكابلات. تُظهر هذه التطبيقات الواقعية كيف يمكن أن يؤدي تغيير المواد إلى سيطرة أفضل على الميزانية الخاصة بالمشروع والتخطيط المالي العام.
تعمل تقنية CCAM مع ما يُعرف بتأثير الجلد. في الأساس، عندما تكون الإشارات ذات ترددات عالية، فإنها تميل إلى الالتصاق بالجزء الخارجي من الموصلات بدلًا من المرور عبرها بالكامل. هذا يعني أن طبقة الطلاء النحاسي على كابلات CCAM تقوم بأغلب العمل من أجل نقل الإشارات بكفاءة. عند النظر في الترددات المحيطة بـ 3 جيجاهرتز، تبقى حوالي 90% من التيار الكهربائي ضمن تلك الطبقة النحاسية. كما أن الفرق في الأداء مقارنةً بالأسلاك النحاسية الصلبة ليس كبيرًا أيضًا، حيث تكون خسارة الإشارة حوالي 8% كل 100 متر أو ما يقارب ذلك. ولكن هناك عيبًا. إن للمعادن مثل الألومنيوم مقاومة أعلى من النحاس (حوالي 2.65 × 10⁻⁸ أوم·متر مقابل 1.68 × 10⁻⁸ أوم·متر للنحاس). ونتيجةً لذلك، فإن تقنية CCAM تفقد فعليًا حوالي 15 إلى 25% إضافية من قوة الإشارة في تلك النطاقات المتوسطة من الترددات بين 500 ميجاهرتز و1 جيجاهرتز. مما يجعلها أقل كفاءة في المواقف التي تحتاج فيها الإشارات إلى السفر لمسافات طويلة أو حمل مستويات قوية من الطاقة في الأنظمة التناظرية.

بينما تحمي الطبقة النحاسية ضد الأكسدة في الظروف الجافة، فإن كابلات CCAM أقل متانة تحت الإجهاد الميكانيكي والبيئي مقارنة بالنحاس الخالص. تُظهر الاختبارات المستقلة هذه الاختلافات:
| الممتلكات | CCAM WIRE | نحاس خالص |
|---|---|---|
| قوة الشد | 110–130 MPa | 200–250 MPa |
| عدد دورات الانحناء قبل الفشل | 3,500 | 8,000+ |
| تآكل رش المحلول الملحي | 720 ساعة | 1,500+ ساعة |
في البيئات الساحلية، تتطور طبقة من الصدأ على كابلات CCAM في نقاط الاتصال خلال 18–24 شهرًا، مما يتطلب صيانة تزيد بنسبة 30٪ مقارنةً بأنظمة النحاس.
تعمل CCAM بشكل ممتاز في النطاقات القصيرة ذات التردد العالي مثل تلك الخلايا الصغيرة لشبكة 5G في المدن. عند تردد 3.5 غيغاهرتز، تفقد فقط حوالي 1.2 ديسيبل لكل 100 متر، وهو ما يناسب تمامًا متطلبات تقنية LTE-A. ولكن هناك مشكلة عندما يتعلق الأمر بتقنية Power over Ethernet (PoE++). بسبب وجود مقاومة تيار مستمر أعلى بنسبة 55٪ تقريبًا مقارنة بالنحاس العادي، يصبح من الصعب استخدامها في الكابلات الأطول من 300 متر لأن الجهد ينخفض بشكل كبير. وجد معظم المُثبّتين أن المزج بين المواد يُعطي نتائج جيدة. إذ يستخدمون CCAM في كابلات الاتصال المؤدية إلى الأجهزة الفردية، لكنهم يبقون على النحاس الخالص في كابلات الخطوط الرئيسية داخل المباني. هذه الطريقة المختلطة تقلل من تكاليف المواد بنسبة تتراوح بين 18 إلى 22 في المئة، مع الحفاظ على خسارة إشارة أقل من 1.5 ديسيبل. في الأساس، إنها طريقة للعثور على التوازن الأمثل بين الأداء الجيد والتكلفة المعقولة.
من المتوقع أن تصل النفقات العالمية على البنية التحتية للاتصالات ذات النطاق العريض إلى نحو 740 مليار دولار بحلول عام 2030 وفقًا لبحث معهد بونيمون من العام الماضي، ويتجه شركات الاتصالات بشكل متزايد إلى بدائل مثل سلك CCAM لتقليل التكاليف. مقارنة بالكابلات النحاسية التقليدية، يقلل CCAM من تكاليف المواد بنسبة تقارب 40 بالمئة تقريبًا، كما أنه أخف وزنًا بنسبة 45 بالمئة تقريبًا، مما يسرع عملية تركيب الخطوط الجديدة في الاتصالات الهوائية أو الاتصالات النهائية. لكن الأهم من ذلك أن CCAM يحتفظ بحوالي 90% من القدرة على توصيل الكهرباء التي يوفرها النحاس، مما يجعله مناسبًا جيدًا لأنظمة الكوابل المحورية الجاهزة لتطبيق الجيل الخامس (5G). يصبح هذا الأمر ذا قيمة خاصة في المناطق الحضرية المزدحمة حيث يواجه المُثبِّتون صعوبات كبيرة في إدخال كابلات نحاسية ثقيلة داخل مساحات ضيقة، وهم بحاجة إلى مواد أكثر مرونة وسهولة في التعامل أثناء العمل الميداني الفعلي.
لقد كان الارتفاع في أسعار النحاس مذهلاً حقاً، حيث ارتفع بنسبة تصل إلى 120% منذ عام 2020 فقط. ونتيجة لذلك، انتقلت العديد من شركات الاتصالات إلى استخدام كابلات النحاس المغطاة بالألمنيوم (CCAM) بدلاً من النحاس. حوالي ثلثي هذه الشركات فعلاً. يُعد استخدام الألمنيوم منطقياً في هذا السياق لأنه أكثر توفرًا بشكل كبير مقارنة بالنحاس. بالإضافة إلى ذلك، فإن تكرير الألمنيوم يتطلب طاقة أقل بكثير أيضًا، حوالي 85% أقل وفقًا للتقارير الصناعية. الفرق في البصمة الكربونية كبير جدًا عند النظر في الأرقام الفعلية. بالنسبة لمنتجات CCAM، فإن الانبعاثات تصل إلى حوالي 2.2 كجم من ثاني أكسيد الكربون لكل كجم من الإنتاج، مقارنة بحوالي 8.5 كجم لكابلات النحاس التقليدية. ميزة كبيرة أخرى للكابلات النحاسية المغطاة بالألمنيوم (CCAM) هي أن معظمها يمكن إعادة تدويره لاحقًا. وعلى عكس النحاس الذي يتقلب سعره بشكل كبير من سنة إلى أخرى، فإن سعر CCAM يظل مستقرًا نسبيًا مع تقلب سنوي لا يتجاوز 8٪. تساعد هذه الاستقرار الشركات على تحقيق أهدافها الخضراء مع الحفاظ على تكاليف متوقعة. وقد بدأت بالفعل العديد من الدول الأوروبية في دفع عجلة تبني الشبكات الخضراء من خلال سياسات تتماشى مع إطار اتفاقية باريس. ونتيجة لذلك، فإن أكثر من 90٪ من مشغلي الاتصالات في الاتحاد الأوروبي يطلبون حاليًا استخدام مواد منخفضة الكربون في جميع مشاريع البنية التحتية الجديدة التي ينفذونها.
أصبح سلك CCAM حلاً مفضلاً في مشاريع النطاق العريض على مستوى المدينة بفضل خفة وزنه المذهلة، حيث يقل وزنه بنسبة 40 بالمائة مقارنة بالخيارات التقليدية. ويجعل هذا من السهل والآمن تركيبه بشكل معلق في البيئات الحضرية المزدحمة. كما تُحدث خفة الوزن فرقاً كبيراً في مجمعات الشقق ذات الأدوار المتعددة وفي الأحياء القديمة، حيث لا يمكن للبنية التحتية الحالية تحمل كثافة الكابلات النحاسية القياسية. وأشار المُثبِّتون إلى أن استخدام سلك CCAM يقلل من وقت العمل بنسبة تتراوح بين 15 و20 بالمائة، مما يعني أن مزودي الخدمات يمكنهم إقامة تلك الوصلات الأخيرة الصعبة دون عناء أو إحداث اضطرابات غير ضرورية للمجتمعات.
لقد وفرت إحدى شركات الاتصالات الكبيرة في أوروبا حوالي 2.1 مليون يورو سنويًا بعد استبدال كابلات التوزيع النحاسية القديمة بكابلات بمواصفات CCAM في 12 منطقة حضرية مختلفة كجزء من توسيعها الوطني لشبكة الألياف الضوئية حتى المنزل (FTTH). وبعد التركيب، أظهرت الاختبارات أن فقدان الإشارة ظل أقل من 0.18 ديسيبل لكل متر عند ترددات 1 غيغاهرتز، وهو ما يعادل بالفعل ما كانت تحصل عليه من النحاس. وبالإضافة إلى ذلك، نظرًا لأن الكابلات الجديدة أخف وزنًا، استطاعت الفرق تركيبها أسرع بنسبة 28% عند تمديدها على طول خطوط الطاقة. وقد تحول ما بدأ كمشروع واحد إلى مثال تنظر إليه شركات أخرى عند التخطيط لتحديثاتها الخاصة. وتشير النتائج إلى أن مواد CCAM تعمل بالفعل بشكل جيد أمام متطلبات الأداء الصارمة، مع الحفاظ في الوقت نفسه على خفض التكاليف وتبسيط سلسلة الإمداد.
سلك CCAM هو نوع من الكابلات المحورية مصنوع من طبقة نحاسية مغطاة على قلب من الألومنيوم، مما يقلل من استهلاك النحاس مع الحفاظ على التوصيل الجيد والأداء.
يوفر كابل CCAM أداءً كهربائيًا مشابهًا لكابلات النحاس الخالص في بعض التطبيقات، خاصة عند الترددات التي تقل عن 1.5 غيغاهرتز، مع تقديم مزايا من حيث التكلفة والوزن الأخف.
تُظهر كابلات CCAM أداءً جيدًا في التطبيقات ذات التردد العالي حتى 3.5 غيغاهرتز، ولكنها قد لا تكون مناسبة للإرسال لمسافات طويلة بسبب زيادة تضعيف الإشارة مقارنة بالنحاس الخالص.
على الرغم من أن كابلات CCAM تتمتع بمقاومة للتآكل، إلا أنها أقل متانة من كابلات النحاس الخالص تحت الإجهاد الميكانيكي، وتحتاج إلى صيانة أكثر في البيئات الساحلية.
تتبني شركات الاتصالات كابل CCAM بسبب فعاليته من حيث التكلفة ووزنه الأخف ومزاياه المتعلقة بالاستدامة، مما يساعدها في تحقيق أهدافها الخضراء وإدارة ميزانيات المشاريع بشكل فعال.
نصائح مخصصة، حلول مناسبة تماماً.
تصنيع فعال، إمدادات سلسة.
اختبارات صارمة، شهادات عالمية.
المساعدة الفورية، الدعم المستمر.