Dec 24,2025
구리 도금 알루미늄(CCA) 와이어는 알루미늄 중심부를 얇은 구리 코팅으로 감싼 구조입니다. 이 조합은 양쪽 소재의 장점을 결합하여, 알루미늄의 경량성과 비용 이점에 더해 구리의 우수한 표면 특성을 제공합니다. 이러한 재료들의 상호작용 덕분에, IACS 기준에서 순수 구리가 제공하는 전도도의 약 60~70% 수준을 달성하게 됩니다. 이는 장비의 성능에 실질적인 영향을 미칩니다. 전도도가 떨어지면 저항이 증가하여 열 형태의 에너지 손실과 회로 전체의 전압 강하가 커지게 됩니다. 예를 들어, 12 AWG 와이어 10미터를 사용해 10암페어의 직류를 흐르게 하는 단순한 회로를 고려해볼 수 있습니다. 이 경우, CCA 와이어는 일반 구리 와이어에 비해 거의 두 배 가까이 전압 강하를 보일 수 있으며, 약 0.8볼트로, 일반 구리 와이어의 0.52볼트보다 높습니다. 이러한 전압 차이는 태양광 발전 설치 장치나 자동차 전자 장비처럼 일정한 전압 수준이 필수적인 민감한 장비에 실제로 문제를 일으킬 수 있습니다.
CCA는 특히 생산량이 크지 않은 LED 조명이나 자동차 부품과 같은 분야에서 비용과 중량 측면에서 분명한 이점이 있다. 그러나 문제는 일반 구리보다 전도성이 떨어지기 때문에, 전선의 길이가 어느 정도가 되면 화재 위험을 초래할 수 있는지에 대해 엔지니어들이 철저한 계산을 해야 한다는 점이다. 알루미늄 주위에 얇게 코팅된 구리 층은 전도성을 높이기 위한 것이 전혀 아니다. 그 주된 목적은 표준 구리 피팅과의 안정적인 연결을 보장하고 서로 다른 금속 간의 부식 문제를 방지하는 것이다. 누군가 CCA를 실제 구리 전선인 것처럼 속이는 경우, 단순히 소비자를 오도할 뿐 아니라 실제로도 전기 규격을 위반하는 것이다. 내부의 알루미늄은 시간이 지나도 구리만큼 열이나 반복적인 굽힘에 견디지 못한다. 전기 시스템을 다루는 사람이라면, 특히 안전이 소재 비용을 아끼는 것보다 더 중요한 상황에서는 이러한 사실을 미리 분명히 알고 있어야 한다.

국제 허용 동 기준(IACS)은 순동을 기준으로 전도도를 100%로 설정합니다. 구리 도금 알루미늄(CCA) 와이어는 알루미늄의 고유한 높은 저항률로 인해 단지 60~70% IACS만 달성합니다. OFC는 0.0171 Ω·mm²/m의 저항률을 유지하는 반면, CCA는 0.0255~0.0265 Ω·mm²/m 범위의 저항률을 가지며, 이는 저항을 55~60% 증가시킵니다. 이 격차는 전력 효율에 직접적인 영향을 미칩니다:
| 재질 | IACS 전도도 | 저항률 (Ω·mm²/m) |
|---|---|---|
| 순동 (OFC) | 100% | 0.0171 |
| CCA (10% Cu) | 64% | 0.0265 |
| CCA (15% Cu) | 67% | 0.0255 |
높은 저항률로 인해 CCA는 전송 중 더 많은 에너지를 열로 소산하게 되며, 이는 시스템 효율을 저하시킵니다—특히 고부하 또는 연속 작동 응용 분야에서 두드러집니다.
전압 강하는 실제 성능 차이를 보여줍니다. 12 AWG 와이어를 사용하여 10m의 직류 전선을 10A로 전달할 경우:
CCA 와이어의 전압 강하는 54% 더 높아서 민감한 직류 시스템에서 과도한 전압 강하로 인한 종료가 발생할 위험이 있습니다. OFC 와이어의 성능과 동일한 수준을 얻기 위해 CCA 와이어는 더 두꺼운 게이지 또는 더 짧은 배선 거리가 필요하며, 이는 실질적인 이점을 제한합니다.
CCA 와이어는 전도성 감소가 비용과 중량 절감에 비해 큰 문제가 되지 않는 실제 응용 분야에서 유리합니다. CCA는 순수 구리의 약 60~70% 수준으로 전기를 전달하지만, 저전압 시스템, 소규모 전류, 또는 짧은 케이블 배선과 같은 용도에서는 이 점이 덜 중요합니다. PoE Class A/B 장비, 집안 곳곳에 설치하는 LED 조명 스트립, 또는 자동차의 부가 기능용 배선 등을 생각해보세요. 자동차 응용 분야를 예로 들어보면, CCA는 구리보다 무게가 약 40% 정도 가볍기 때문에, 자동차 배선 하네스처럼 무게가 중요한 분야에서 큰 차이를 만듭니다. 게다가 대부분의 LED 설치는 케이블을 대량으로 필요로 하기 때문에, 가격 차이가 빠르게 누적됩니다. 케이블 길이가 대략 5미터 이하로 유지된다면, 대부분의 응용 분야에서 전압 강하가 허용 범위 내에 머무릅니다. 이는 고가의 OFC 소재를 사용하지 않고도 작업을 완수할 수 있음을 의미합니다.
안전성과 우수한 성능은 전압 강하가 문제시되기 전에 전기 배선이 어느 정도 길이까지 허용되는지를 아는 데 달려 있습니다. 기본 공식은 다음과 같습니다: 최대 배선 길이(미터)는 전압 강하 허용치에 도체 단면적을 곱한 값을 전류와 비저항, 그리고 2를 곱한 값으로 나눈 것과 같습니다. 실제 사례를 통해 그 결과를 살펴보겠습니다. 12V의 표준 LED 장치가 약 5암페어의 전류를 소비한다고 가정합니다. 전압 강하를 3% 허용할 경우(약 0.36볼트에 해당)이며, 2.5제곱밀리미터의 구리 도금 알루미늄 전선(비저항은 약 0.028 옴·미터)을 사용하면, 계산식은 다음과 같습니다: (0.36 × 2.5) ÷ (5 × 0.028 × 2) ≈ 3.2미터가 최대 배선 길이로 산출됩니다. 낮은 전력 수준의 회로에 적용되는 지역 규정(예: NEC Article 725)과 비교하여 이 수치들을 반드시 확인해야 합니다. 계산에서 산출된 값을 초과하면 전선의 과열, 절연 피복의 장기적 열화, 또는 장비의 완전한 고장과 같은 심각한 문제가 발생할 수 있습니다. 특히 주변 온도가 높거나 여러 케이블이 한데 묶여 있는 경우 이러한 위험이 더욱 중요해지며, 이들 상황은 모두 추가적인 열 축적을 유발하기 때문입니다.
많은 사람들은 소위 '스킨 효과'가 CCA의 알루미늄 코어가 가지는 문제점을 보완해 준다고 생각합니다. 이 아이디어는 고주파에서 전류가 도체의 표면 근처에 집중된다는 것입니다. 그러나 연구 결과는 그와 반대입니다. 구리 도금 알루미늄(Copper Clad Aluminum)은 직류 기준으로 순수 구리 와이어에 비해 약 50-60% 더 높은 저항을 가집니다. 그 이유는 알루미늄이 전기를 전도하는 능력이 떨어지기 때문입니다. 이는 와이어를 통과할 때 더 큰 전압 강하가 발생하고 전기를 흘릴 때 더 많은 열이 발생한다는 의미입니다. 전력 오버 이더넷(PoE) 환경에서는 실제 문제가 됩니다. 왜냐하면 같은 케이블을 통해 데이터와 전력을 모두 전달하면서도 과열로 인한 손상을 피하기 위해 충분한 냉각을 유지해야 하기 때문입니다.
무산소 동(OFC)에 대한 또 다른 흔한 오해가 있다. 물론 OFC는 일반적인 ETP 동의 99.90% 순도에 비해 약 99.95%의 순도를 가지지만, 실제로 전도도에서의 차이는 그리 크지 않다. IACS 기준으로 겨우 1% 미만 정도 더 낫다는 수준이다. 복합 도체(CCA)의 경우, 진짜 문제는 동의 품질이 전혀 아니다. 이 복합재에 사용된 알루미늄 기반 소재에서 비롯되는 문제가 핵심이다. 일부 응용 분야에서 OFC를 고려할 만하게 만드는 것은 사실 열악한 환경에서도 표준 동보다 훨씬 우수한 부식 저항성이다. 이러한 특성은 ETP 동 대비 극히 미세한 전도도 향상보다 실용적인 상황에서 훨씬 더 중요한 의미를 갖는다.
| 인자 | CCA WIRE | 순동 (OFC/ETP) |
|---|---|---|
| 전도도 | 61% IACS (알루미늄 코어) | 100–101% IACS |
| 비용 절감 | 재료 비용 30–40% 낮음 | 기본 비용이 더 높음 |
| 주요 한계 | 산화 위험, PoE 비호환 | ETP 대비 전도도 향상 거의 없음 |
궁극적으로, CCA 와이어의 성능 격차는 알루미늄 고유의 특성에서 비롯되며, 구리 클래딩 두께나 무산소 변종으로는 해결할 수 없습니다. 규격 제정자는 CCA의 실용성을 평가할 때 순도 마케팅보다 응용 요구사항을 우선시해야 합니다.
맞춤형 조언, 완벽한 솔루션
효율적인 제조, 원활한 공급
엄격한 테스트, 글로벌 인증
즉각적인 지원, 지속적인 지원