Dec 25,2025

동도금 알루미늄(Copper Clad Aluminum) 또는 CCA 와이어는 기본적으로 알루미늄 중심부를 얇은 동 코팅층이 감싸고 있는 구조로, 이 코팅층은 전체 단면적의 약 10~15% 정도를 차지합니다. 이러한 조합의 목적은 간단히 말해 두 세계의 장점을 취하려는 것으로, 가볍고 비용 효율적인 알루미늄과 더불어 표면에서 우수한 전도성을 제공하는 구리의 특성을 함께 활용하려는 것입니다. 하지만 함정이 있습니다. 두 금속 사이의 접합이 충분히 강하지 않으면 계면에 미세한 틈이 생길 수 있으며, 시간이 지나면서 이 틈이 산화되어 정상적인 구리 와이어에 비해 전기 저항을 최대 55%까지 증가시킬 수 있습니다. 실제 성능 수치를 살펴보면, CCA는 전도성 면에서 일반적으로 국제 어닐링 구리 기준(IACS)의 약 60~70% 수준에 도달하는데, 이는 알루미늄 자체가 구리만큼 전기를 잘 전도하지 못하기 때문입니다. 이러한 낮은 전도성으로 인해, 동일한 전류를 처리하기 위해 CCA를 사용할 경우 구리보다 더 두꺼운 와이어를 사용해야 합니다. 이 요구사항은 본래 CCA의 매력이었던 경량성과 재료 비용 절감 효과 대부분을 상쇄시키게 됩니다.
CCA의 증가된 저항은 전류를 흐르게 할 때 더 큰 쥴 열(Joule heating)을 발생시킨다. 주변 온도가 약 30도 섭씨에 도달하면, 국립전기규격(NEC)에서는 동일한 두께의 구리 전선과 비교해 이러한 도체의 전류 용량을 약 15~20% 줄이도록 요구한다. 이 조정은 절연재와 연결 부위가 안전 기준을 초과하여 과열되는 것을 방지하기 위한 것이다. 일반적인 분기 회로의 경우, 실제 사용 가능한 연속 부하 용량이 약 4분의 1에서 3분의 1 정도 감소한다는 의미이다. 시스템이 최대 정격치의 70% 이상으로 지속적으로 작동할 경우, 알루미늄은 어닐링(annealing)이라고 불리는 경화 공정을 통해 부드러워지기 시작한다. 이로 인해 도체의 핵심 강도가 약화되며 단자부 연결이 손상될 수 있다. 특히 열이 제대로 배출되지 않는 밀폐된 공간에서는 문제가 더욱 악화된다. 시간이 지남에 따라 이러한 재료들이 열화되면 설치 전체에 걸쳐 위험한 핫스팟(hot spots)이 생기게 되며, 이는 궁극적으로 전기 시스템의 안전 기준과 신뢰성 있는 성능을 위협하게 된다.
CCA 와이어는 오늘날의 PoE(Power over Ethernet) 시스템과 잘 작동하지 않으며, 특히 최대 90와트의 전력을 공급할 수 있는 IEEE 802.3bt 표준의 5급 및 6급 시스템에서는 더욱 그렇습니다. 문제는 필요한 수준보다 약 55~60% 높은 저항 수준에서 기인합니다. 이로 인해 일반 케이블 길이에서도 심각한 전압 강하가 발생하여 수신 장치 측에서 필요한 안정적인 48~57V DC 전압을 유지할 수 없게 됩니다. 그 다음에 일어나는 일도 심각합니다. 추가적인 저항은 열을 발생시키며, 이는 더 뜨거운 케이블일수록 저항이 더욱 커지는 악순환을 만들어내어 위험하게 온도가 계속 상승하게 됩니다. 이러한 문제들은 NEC Article 800의 안전 규정과 IEEE 사양 모두에 위배되기도 합니다. 장비가 아예 작동을 멈출 수 있고, 중요한 데이터가 손상되거나, 최악의 경우 장치에 충분한 전력이 공급되지 않아 부품이 영구적인 손상을 입을 수 있습니다.
케이블 길이가 50미터를 초과하는 경우, CCA 도체는 종종 분기 회로에 대한 NEC의 3% 전압 강하 한계를 초과하게 됩니다. 이는 장비의 비효율적인 작동, 민감한 전자기기의 조기 고장 및 다양한 성능 문제와 같은 문제를 유발합니다. 10암페어를 초과하는 전류 수준에서는, NEC 310.15(B)(1)에 따라 CCA는 상당한 전류 용량 감소가 필요합니다. 그 이유는 알루미늄이 구리만큼 열을 잘 견디지 않기 때문입니다. 알루미늄의 융해점은 약 660도 섭씨인 반면, 구리는 훨씬 높은 1085도 섭씨입니다. 도체를 더 크게 선정하여 이 문제를 해결하려는 시도는, 본래 CCA를 사용함으로써 기대했던 비용 절감 효과를 사실상 상쇄해 버립니다. 실제 현장 데이터 역시 다른 이야기를 전합니다. CCA를 사용한 설치는 일반 구리 배선에 비해 약 40% 더 많은 열 스트레스 사고가 발생하는 경향이 있습니다. 그리고 이러한 스트레스 사고가 밀폐된 배관 내부에서 발생할 경우, 누구도 원하지 않는 실질적인 화재 위험을 초래하게 됩니다.
CCA 와이어 내부의 알루미늄 코어가 연결 지점에서 노출되면, 매우 빠르게 산화가 시작됩니다. 이로 인해 높은 저항을 가진 알루미늄 산화층이 형성되며, 국부적인 온도를 약 30% 정도 높일 수 있습니다. 그 다음에 발생하는 일은 신뢰성 문제에 있어 더욱 악영향을 미칩니다. 단자 나사가 장기간 일정한 압력을 가하게 되면, 알루미늄은 실제로 접촉 부위에서 냉간 유동(cold flow) 현상으로 빠져나가게 되어 접속부가 점차 느슨해집니다. 이는 영구 설치물에 대해 견고하고 저항이 낮은 접속부를 요구하는 NEC 110.14(A) 등의 전기 코드 규정을 위반하는 것입니다. 이 과정에서 발생한 열은 아크 고장을 유발하며 절연 재료를 파손시키는 원인이 되며, NFPA 921의 화재 원인 조사에서는 이를 자주 언급합니다. 20암페어 이상의 회로에서 CCA 와이어의 문제는 일반 구리 배선에 비해 약 5배 빠르게 나타납니다. 위험한 점은 바로 이 점인데, 이러한 고장은 종종 조용히 진행되어 심각한 손상이 발생하기 전까지는 정상 점검에서도 뚜렷한 징후를 보이지 않는다는 것입니다.
주요 고장 메커니즘은 다음을 포함합니다:
적절한 완화를 위해서는 알루미늄 도체 전용으로 명시된 항산화 화합물과 토크 제어 단자 사용이 필요하지만, CCA 와이어의 경우 실제 적용에서는 거의 시행되지 않는다.
열적 요건 및 전압 강하 제약이 최소화되는 저전력·저전류 응용 분야에서는 CCA 와이어를 책임감 있게 사용할 수 있습니다. 여기에는 다음이 포함됩니다:
CCA 배선은 콘센트, 조명 또는 건물 내 일반 전기 부하를 위한 회로에 사용해서는 안 됩니다. 국가 전기 규격(National Electrical Code) 제310조는 장시간 과열, 전압 변동, 연결부 고장 등의 문제가 발생했기 때문에 15~20암페어 회로에서 CCA 사용을 금지하고 있습니다. CCA 사용이 허용되는 경우에도, 엔지니어는 선로 전체에서 전압 강하가 3%를 초과하지 않도록 확인해야 하며, 모든 접속부가 NEC 110.14(A)에 명시된 기준을 충족해야 합니다. 이러한 사양은 특수 장비와 대부분의 계약자가 익숙하지 않은 적절한 시공 기술 없이는 달성하기 어렵습니다.
CCA 도체의 경우 제3자 인증은 선택이 아니라 필수입니다. 항상 공인된 표준에 대한 유효한 등재 여부를 확인하십시오.
| 표준 | 적용 범위 | 중요 시험 |
|---|---|---|
| UL 44 | 열가화성 절연 와이어 | 내화성, 절연 강도 |
| UL 83 | 열가소성 절연 와이어 | 121°C에서 변형 저항성 |
| CSA C22.2 No. 77 | 열가소성 절연 도체 | 냉간 굽힘, 인장 강도 |
UL 온라인 인증 디렉토리에 등재된 것은 미확인 제조업체 라벨과 달리 독립적인 검증을 의미합니다. 인증 목록에 없는 CCA는 인증 제품보다 ASTM B566 접착력 시험에서 7배 더 자주 실패하며, 이로 인해 단자부의 산화 위험이 직접적으로 증가할 수 있습니다. 사양 지정 또는 설치 전에 정확한 인증 번호가 활성 상태의 공식 등재 내역과 일치하는지 확인하십시오.
맞춤형 조언, 완벽한 솔루션
효율적인 제조, 원활한 공급
엄격한 테스트, 글로벌 인증
즉각적인 지원, 지속적인 지원